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Abstract – The increasing demands of PC technologies have led to the development and realization of fast memory devices. There are 
several solutions for fast and efficient memory modules suitable for PC’s starting from flip flops to SDRAMs, DDR SDRAMs, its generations 
and more. Memory devices should also be supplemented by a well implemented controller in order to establish an interface between other 
hardware’s and itself. However it is a hard problem to protect the memory from corrupted data transfer and storage. Memory corruption can 
happen due to several reasons such as virus attacks, spyware or malware attacks, intermediate hackers etc. So in-order to prevent the 
memory from getting corrupted it is necessary to sense any real time changes in the data and correct it. Several integrity verification 
mechanisms can be incorporated along with the memory controller module to solve memory corruption. This paper deals with designing 
and implementing such a controller to appropriately control a DDR SDRAM. The paper also contains a method that can be realized along 
with the memory control logic in-order to perform memory integrity verification by making use of a popular hash function such as the SHA-
2.  

Index Terms – DDR,  SDRAM, Verilog, IP Core, FPGA, SHA, PLL. 

——————————      —————————— 
 

1 INTRODUCTION 
 
   DDR is an updated production of SDRAM. In order to 
achieve high-speed operation, it uses a double data rate 
architecture in which an interface is designed to transfer two 
data words per clock cycle at the I/O pins. The DDR SDRAM 
memory controller is used as a generic interface to the DDR 
SDRAM memory devices and provides a synchronous 
command interface to user requirements.  
   As DDR memory devices play the role of main memory 
module in computer systems its protection is very important 
and critical. In modern computer environments the operating 
system itself can prevent inter process access of data by 
memory isolation techniques. Yet inbuilt bugs within the OS 
can be manipulated by malicious attackers. Hence, a simple 
method has been suggested in this paper in order to provide 
an efficient memory integrity verification technique.  
   The SHA-2 function belonging to the family of 
cryptographic hash functions can be used here to verify the 
memory integrity.  
SHA-2, though not as widely used as SHA-1 has lower 
collision possibility and facilitates faster and larger bit rates 
than SHA-1.  
   The focus of this work is to develop the behavioral model of 
the controller, using verilog HDL (IEEE 1364-2005). It also 
gives an idea that can be realized to prevent memory 
corruption. The targeted DDR SDRAM memory is Micron® 
MT46V4M16 and prototyping was done in Altera® Cyclone™ 
II series FPGA. 
 
 
 
 

 

2 SECURED HASH ALGORITHM – SHA-256 
 

2.1 Introduction 
   SHA-2 is a set of cryptographic hash functions (SHA-224, 
SHA-256, SHA-384, SHA-512) designed by the U.S. National 
Security Agency (NSA) and published in 2001 by the NIST as 
a U.S. Federal Information Processing Standard. A hash 
function is an algorithm that transforms (hashes) an arbitrary 
set of data elements, such as a text file, into a single fixed 
length value (the hash). The computed hash value may then 
be used to verify the integrity of copies of the original data 
without providing any means to derive said original data [6]. 
   SHA-2 consists of a set of four hash functions with digest 
sizes (output size) that are 224, 256, 384 or 512 bits. SHA-256 
will be suitable here as high speed data tracking is desirable. 
It is considered secure with no known theoretical 
vulnerabilities and it has a reasonable digest size of 32 bytes. 
 
2.2 Overview 
   The SHA-256 operates such that the message to be hashed is 
first (1) padded with its length in such a way that the result is 
a multiple of 512 bits long, and then (2) parsed into 512-bit 
message blocks M(1), M(2),......., M (N). The message blocks 
are processed one at a time: Beginning with a fixed initial 
hash value H(0) , sequentially compute  
 
H(i) = H(i–1 ) + CM(i) (H(i–1 ))                 (1) 
 
where C is the SHA-256 compression function and + means 
word-wise mod 232 addition. H(N) is the hash of M [8]. 
 
2.3 Description 
   The SHA-256 compression function operates on a 512-bit 
message block and a 256- bit intermediate hash value. It is 
essentially a 256-bit block cipher algorithm which encrypts 
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the intermediate hash value using the message block as key. 
Hence there are two main components to describe: (1) the 
SHA-256 compression function, and (2) the SHA-256 message 
schedule. 
 
 

 
Fig. 1. jth internal step of the SHA-256 Compression function, C 

 
 

   In Fig. 1., it shows the jth  iteration in an SHA-2 family 
compression function. Here, a, b, c, d, e, f, g and h are 
registers. Sn is right rotation by n bits, Rn is right shift by n 
bits. Operations performed are as follows: 

Ch(e,f,g) = (e^f) xor (¬e^g) 
Maj(a,b,c) = (a^b) xor (a^c) xor (b^c) 

Σ0(a) = S2(a) xor S13(a) xor S22(a) 
Σ1(e) = S6(e) xor S11(e) xor S25(e) 
σ0(a) = S7(a) xor S18(a) xor R3(a) 

σ1(e) = S17(e) xor S19(e) xor R10(e) 
 
also, the symbol,      denotes  mod 232 addition. 
 
 

 
Fig. 2. SHA-256 message schedule 

 
 
    In Fig. 2., Wj indicates expanded message blocks and can be 
computed by using the following equation, 

Wj = Mj(i)   
For j = 0, 1,....., 15, and for j = 16 to 63 
{ 
       Wj σ1(Wj–2) + Wj–7  + σ0(Wj–15) + Wj–16               (2) 
} 
The registers in Fig. 2. are loaded with W0, W1,........, W15 
 
 
3   DDR SDRAM MEMORY – A BRIEF REVIEW 

 
3.1 Introduction 
   The DDR SDRAM targeted is a high speed CMOS, dynamic 
random access memory internally configured as a quad bank 

DRAM. DDR SDRAM uses the double data rate architecture 
to achieve high speed operation, which is essentially a 2n 
prefetch architecture, where n is the number of bits. The 
architecture contains an interface designed to transfer two 
data words per clock cycle at the I/O pins. A single read or 
write access for the DDR SDRAM consists of a single 2n bit 
wide, one clock cycle data transfer at the internal DRAM core 
and two corresponding n bit wide, one half clock cycle data 
transfers at the I/O pins. Read and write accesses to the DDR 
SDRAM are burst oriented. Programmable READ or WRITE 
burst lengths of 2, 4, or 8 locations can be provided. At the 
end of every burst access a self timed row precharge will be 
initiated using an auto precharge function. Prior to normal 
operation, the DDR SDRAM must be powered up and 
initialized [4]. 
 
3.2 Target Memory – Micron® MT42V4M16 
   The Micron® 64Mb [5] DDR SDRAM referenced in this 
paper is a high – speed CMOS, dynamic random access 
memory containing 67,108,864 bits. It is internally configured 
as a quad – bank DRAM. Each of the 16,777,216 bit banks are 
organized as 4,096 rows by 128 columns by 32 bits. All inputs 
are compatible with the JEDEC Standard for SSTL_2. All full 
drive outputs are SSTL_2, Class II compatible. 
 
 
4 CONTROLLER ARCHITECTURE – CONTROL 
LOGIC & MEMORY INTEGRITY VERIFICATION 
LOGIC 

 
4.1 Pin Description 
  The pin diagram for the controller is shown in Fig. 3.  
 

 
 

Fig. 3. Pin Diagram - DDR SDRAM Controller 
   The inputs to the controller are fed by the user and the 
outputs from the controller are fed to the memory inputs. 
The signal name, type and description of each signal is given 
in Table I [9]. 
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TABLE I 
PIN DESCRIPTION – DDR SDRAM CONTROLLER 

 

Signal Type Description 

Clk Input System Clock 

reset_N Input System Reset 

addr[21 : 
0] Input 

Memory address for 
read/write requests. Width 
is set by ASIZE 

cmd[2:0] Input Command request 

cmd_ack Output 
Acknowledgement of the 
requested command 

dIn[127:0] Input Input Data Bus 

dout[127:0] Output Output Data Bus 

dm[15 :0] Input 
Masks individual bytes 
during data write 

Sclk Input System Clock 

SCLK_N Input Inverted System Clock 

SA[11:0] Output 

SA[11:0] is sampled during 
the ACT command to latch 
the row address and latches 
column address during 
RD/ WR command. SA[10] 
is sampled during 
PRECHARGE to determine 
if all banks are precharged 
or the bank selected by 
BA[1:0]. 

BA[1:0] Output 

These signals determine to 
which bank the ACT, RD, 
WR or PCH command is 
being applied. 

CS_N[1:0] Output SDRAM chip select 

CKE Output SDRAM CKE input. 

RAS_N Output SDRAM Command input. 

CAS_N Output SDRAM Command input. 

WE_N Output SDRAM Command input. 

dq[63 :0] Input/
Output 

SDRAM data Bus 

dqm[7: 0] Output 

SDRAM data Masks, mask 
individual bytes during 
data write 

dqs[7 : 0] Output 

SDRAM data Strobe, strobes 
data into the DDR devices 
during a write operation 

 
 

4.2 Introduction 
  The DDR SDRAM controller [9] is designed to provide a 
simplified interface to the industry standard DDR SDRAM 
memory Micron® MT46V4M16. It has a user interface at one 
side and the memory at the other side. Burst lengths of 2, 4 or 
8 and CAS latencies of 1.5, 2.0, 2.5 or 3.0 can be programmed 
using the controller. Data mask lines are supported for 
WRITE operations. The controller supports seven commands 
including two for the load registers. 
  The commands are: NOP, READ, WRITE, REFRESH, 
PRECHARGE and LOAD_REG. Data mask lines are 
supported for WRITE operations. It supports the following 
commands: NOP, READ, WRITE, REFRESH, PRECHARGE 
and LOAD_REG. Data path widths of 16, 32 and 64 bits are 
possible. It uses two different frequency, 100 MHz and 
200MHz output clocks to facilitate enhanced performance. 
The DDR SDRAM is controlled by bus commands that are 
formed using combinations of RAS_N, CAS_N and WE_N 
signals. 
 
4.3 Detailed Architecture – Control Logic 
  The detailed architecture of the proposed controller is shown 
in Fig. 4. DDR SDRAM Controller module consists of three 
main modules, the Control Interface, Command and Data 
Path Modules. The DDR SDRAM Controller module is the 
top-level module that instantiates the three lower modules 
and brings the whole design together. The inputs to the 
controller are fed by the user and the outputs from the 
controller are fed to the memory inputs. The Control Interface 
module accepts commands and related memory addresses 
from the host, decoding the command and passing the 
request to the Command module. The command module 
accepts command and address from the Control Interface 
Module, generating the proper commands to the SDRAM. 
The data Path Modules handles the data path operations 
during WRITE and READ commands [9]. The top-level 
module also instantiates a PLL that is used to generate two 

output clocks of 100MHz and 200MHz each and a locked 
clock output to improve I/O timing. The control and interface 
modules decodes the NOP, READ, WRITE, PRECHARGE, 

REFRESH and LOAD_REG commands and passes them 
along with ADDR to the command module. 
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Fig. 4. Detailed Architecture – DDR SDRAM Control Logic 
 
 
Refresh commands also are periodically registered to the 
command module using this module. The command module 
generates appropriate signals to the memory by accepting 
decoded commands from the control and interface module. It 
also contains a bus arbiter that arbitrates between the 
commands from the host interface and the refresh requests 
from the refresh control logic. The data path width in to the 
controller is two times the width to the DDR SDRAM device. 
DIN and DOUT are fixed at 32 bits and the DQ port is fixed at 
16 bits. Data path modules can be cascaded to increase the 
data bus width in increments of 32 bits as shown in Fig. 4. 
 
4.4 Memory Integrity Verification Logic 
   The integrity verification algorithm is illustrated in Fig. 5.  
As shown in the figure, there are two blocks which can be DQ 
sized arrays used to store the original data and the possibly 
untrusted data. DQS[7:0], dqs[7:0] and saddr[11:0] is used to 
sync the appropriate data storage within these blocks. Then 

the data within each block have to be transferred to the SHA 
engine where the hash functions are used to perform equal 
operations on both the data. For every READ operation the 
data stored in the original data hash table during the previous 
WRITE command should match that of the untrusted data 
hash table. Also during the WRITE command the column 
data specified in the address line saddr[11:0] will be written 
to both the trusted and untrusted blocks. This data after 
performing hash operations within the SHA engine and 
stored in the data hash tables should also match each other. If 
a match occurs it indicates that the memory is not corrupted 
and so a logic HIGH is generated by the hash function 
comparator. Otherwise a logic LOW is forced on to the 
RESET_N pin which helps to flush the corrupted data from 
the memory. During the next command cycle a NOP 
command issued by the controller again brings back the 
RESET_N pin HIGH to facilitate further memory transfers.  
 

text

CLK

ADDR[21:0]

RESET_N

CMD[2:0]

DIN[127:0]

DM[15:0]

CAS_N

RAS_N

WE_N

CKE

CS_N[1:0]

SA[11:0]

BA[1:0]

CMD_ACK

DOUT[127:0]

DQS[7:0]

DQ[63:0]

DQM[7:0]

MEMORY 
CONTROL LOGIC

text

ORIGINAL 
DATA

UN-TRUSTED 
DATA

HASH FUNCTION 
COMPARATOR

HASH 
FUNCTION 

TABLE I
ORIGINAL 

DATA

HASH 
FUNCTION 
TABLE II 

UN-TRUSTED 
DATA

SHA ENGINE

INTEGRITY VERIFICATION 
ALGORITHM

DDR SDRAM 
MEMORY 
MODULE 

(Vulnerable to 
Corruption – 
Un-trusted)

DDR SDRAM CONTROLLER CORE

dq[63:0] dqs[7:0] saddr[21:0]

(1/0) Verified Integrity Information

 
 

Fig. 5. DDR SDRAM Controller Core with Memory Integrity Verification 
Algorithm 

5 TESTING 
 

   The architectural design was tested by using a test bench 
with test signals as shown in Fig. 9. A set of preferable input 
combinations were forced to act upon the controller inputs so 
that correct results were obtained as waveforms. The 
simulated results were obtained in ModelSim® by applying 
appropriate delay elements. 
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Fig. 6. Test Bench – DDR SDRAM Controller Core 
 

 
    The design was synthesized by porting to Altera® 
Cyclone™ II - EP2C20F484C7 FPGA and results were verified 
using SignalTap® II Logic Analyzer tool in Altera Quartus® 
II software. 

 
 

6 CONCLUSION 
 
   This paper describes the architecture design of DDR 
SDRAM Controller IP Core with an inbuilt memory integrity 
verification module. The proposed architecture can 
successfully control the different commands to the DDR 
SDRAM memory module. The design was modeled using 
verilog HDL and can be easily adapted for several different 
design requirements. The paper also suggests a modest, yet 
efficient method to protect the memory from being corrupted 
while transfer of data between the memory and other 
modules. Even though DDR SDRAMs higher generations are 
available now, a DDR SDRAM memory was used here as its 
standards are still being deployed and improved. This 
method for memory integrity verification if realized can be 
applied to DDR2 and also higher generations of memory 
devices.  
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