
International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 757
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Design of DDR SDRAM Controller with inbuilt
Memory Integrity Verification Module

Suvarna P, Nandakumar R.

Abstract – The increasing demands of PC technologies have led to the development and realization of fast memory devices. There are
several solutions for fast and efficient memory modules suitable for PC’s starting from flip flops to SDRAMs, DDR SDRAMs, its generations
and more. Memory devices should also be supplemented by a well implemented controller in order to establish an interface between other
hardware’s and itself. However it is a hard problem to protect the memory from corrupted data transfer and storage. Memory corruption can
happen due to several reasons such as virus attacks, spyware or malware attacks, intermediate hackers etc. So in-order to prevent the
memory from getting corrupted it is necessary to sense any real time changes in the data and correct it. Several integrity verification
mechanisms can be incorporated along with the memory controller module to solve memory corruption. This paper deals with designing
and implementing such a controller to appropriately control a DDR SDRAM. The paper also contains a method that can be realized along
with the memory control logic in-order to perform memory integrity verification by making use of a popular hash function such as the SHA-
2.

Index Terms – DDR, SDRAM, Verilog, IP Core, FPGA, SHA, PLL.

—————————— ——————————

1 INTRODUCTION

 DDR is an updated production of SDRAM. In order to
achieve high-speed operation, it uses a double data rate
architecture in which an interface is designed to transfer two
data words per clock cycle at the I/O pins. The DDR SDRAM
memory controller is used as a generic interface to the DDR
SDRAM memory devices and provides a synchronous
command interface to user requirements.
 As DDR memory devices play the role of main memory
module in computer systems its protection is very important
and critical. In modern computer environments the operating
system itself can prevent inter process access of data by
memory isolation techniques. Yet inbuilt bugs within the OS
can be manipulated by malicious attackers. Hence, a simple
method has been suggested in this paper in order to provide
an efficient memory integrity verification technique.
 The SHA-2 function belonging to the family of
cryptographic hash functions can be used here to verify the
memory integrity.
SHA-2, though not as widely used as SHA-1 has lower
collision possibility and facilitates faster and larger bit rates
than SHA-1.
 The focus of this work is to develop the behavioral model of
the controller, using verilog HDL (IEEE 1364-2005). It also
gives an idea that can be realized to prevent memory
corruption. The targeted DDR SDRAM memory is Micron®
MT46V4M16 and prototyping was done in Altera® Cyclone™
II series FPGA.

2 SECURED HASH ALGORITHM – SHA-256

2.1 Introduction
 SHA-2 is a set of cryptographic hash functions (SHA-224,
SHA-256, SHA-384, SHA-512) designed by the U.S. National
Security Agency (NSA) and published in 2001 by the NIST as
a U.S. Federal Information Processing Standard. A hash
function is an algorithm that transforms (hashes) an arbitrary
set of data elements, such as a text file, into a single fixed
length value (the hash). The computed hash value may then
be used to verify the integrity of copies of the original data
without providing any means to derive said original data [6].
 SHA-2 consists of a set of four hash functions with digest
sizes (output size) that are 224, 256, 384 or 512 bits. SHA-256
will be suitable here as high speed data tracking is desirable.
It is considered secure with no known theoretical
vulnerabilities and it has a reasonable digest size of 32 bytes.

2.2 Overview
 The SHA-256 operates such that the message to be hashed is
first (1) padded with its length in such a way that the result is
a multiple of 512 bits long, and then (2) parsed into 512-bit
message blocks M(1), M(2),......., M (N). The message blocks
are processed one at a time: Beginning with a fixed initial
hash value H(0) , sequentially compute

H(i) = H(i–1) + CM(i) (H(i–1)) (1)

where C is the SHA-256 compression function and + means
word-wise mod 232 addition. H(N) is the hash of M [8].

2.3 Description
 The SHA-256 compression function operates on a 512-bit
message block and a 256- bit intermediate hash value. It is
essentially a 256-bit block cipher algorithm which encrypts

IJSER

http://www.ijser.org/
https://en.wikipedia.org/wiki/Cryptographic_hash_function
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/National_Security_Agency
https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
https://en.wikipedia.org/wiki/Federal_Information_Processing_Standard
https://en.wikipedia.org/wiki/Algorithm

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 758
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

the intermediate hash value using the message block as key.
Hence there are two main components to describe: (1) the
SHA-256 compression function, and (2) the SHA-256 message
schedule.

Fig. 1. jth internal step of the SHA-256 Compression function, C

 In Fig. 1., it shows the jth iteration in an SHA-2 family
compression function. Here, a, b, c, d, e, f, g and h are
registers. Sn is right rotation by n bits, Rn is right shift by n
bits. Operations performed are as follows:

Ch(e,f,g) = (e^f) xor (¬e^g)
Maj(a,b,c) = (a^b) xor (a^c) xor (b^c)

Σ0(a) = S2(a) xor S13(a) xor S22(a)
Σ1(e) = S6(e) xor S11(e) xor S25(e)
σ0(a) = S7(a) xor S18(a) xor R3(a)

σ1(e) = S17(e) xor S19(e) xor R10(e)

also, the symbol, denotes mod 232 addition.

Fig. 2. SHA-256 message schedule

 In Fig. 2., Wj indicates expanded message blocks and can be
computed by using the following equation,

Wj = Mj(i)
For j = 0, 1,....., 15, and for j = 16 to 63
{
 Wj σ1(Wj–2) + Wj–7 + σ0(Wj–15) + Wj–16 (2)
}
The registers in Fig. 2. are loaded with W0, W1,........, W15

3 DDR SDRAM MEMORY – A BRIEF REVIEW

3.1 Introduction
 The DDR SDRAM targeted is a high speed CMOS, dynamic
random access memory internally configured as a quad bank

DRAM. DDR SDRAM uses the double data rate architecture
to achieve high speed operation, which is essentially a 2n
prefetch architecture, where n is the number of bits. The
architecture contains an interface designed to transfer two
data words per clock cycle at the I/O pins. A single read or
write access for the DDR SDRAM consists of a single 2n bit
wide, one clock cycle data transfer at the internal DRAM core
and two corresponding n bit wide, one half clock cycle data
transfers at the I/O pins. Read and write accesses to the DDR
SDRAM are burst oriented. Programmable READ or WRITE
burst lengths of 2, 4, or 8 locations can be provided. At the
end of every burst access a self timed row precharge will be
initiated using an auto precharge function. Prior to normal
operation, the DDR SDRAM must be powered up and
initialized [4].

3.2 Target Memory – Micron® MT42V4M16
 The Micron® 64Mb [5] DDR SDRAM referenced in this
paper is a high – speed CMOS, dynamic random access
memory containing 67,108,864 bits. It is internally configured
as a quad – bank DRAM. Each of the 16,777,216 bit banks are
organized as 4,096 rows by 128 columns by 32 bits. All inputs
are compatible with the JEDEC Standard for SSTL_2. All full
drive outputs are SSTL_2, Class II compatible.

4 CONTROLLER ARCHITECTURE – CONTROL
LOGIC & MEMORY INTEGRITY VERIFICATION
LOGIC

4.1 Pin Description
 The pin diagram for the controller is shown in Fig. 3.

Fig. 3. Pin Diagram - DDR SDRAM Controller
 The inputs to the controller are fed by the user and the
outputs from the controller are fed to the memory inputs.
The signal name, type and description of each signal is given
in Table I [9].

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 759
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

TABLE I
PIN DESCRIPTION – DDR SDRAM CONTROLLER

Signal Type Description

Clk Input System Clock

reset_N Input System Reset

addr[21 :
0] Input

Memory address for
read/write requests. Width
is set by ASIZE

cmd[2:0] Input Command request

cmd_ack Output
Acknowledgement of the
requested command

dIn[127:0] Input Input Data Bus

dout[127:0] Output Output Data Bus

dm[15 :0] Input
Masks individual bytes
during data write

Sclk Input System Clock

SCLK_N Input Inverted System Clock

SA[11:0] Output

SA[11:0] is sampled during
the ACT command to latch
the row address and latches
column address during
RD/ WR command. SA[10]
is sampled during
PRECHARGE to determine
if all banks are precharged
or the bank selected by
BA[1:0].

BA[1:0] Output

These signals determine to
which bank the ACT, RD,
WR or PCH command is
being applied.

CS_N[1:0] Output SDRAM chip select

CKE Output SDRAM CKE input.

RAS_N Output SDRAM Command input.

CAS_N Output SDRAM Command input.

WE_N Output SDRAM Command input.

dq[63 :0] Input/
Output

SDRAM data Bus

dqm[7: 0] Output

SDRAM data Masks, mask
individual bytes during
data write

dqs[7 : 0] Output

SDRAM data Strobe, strobes
data into the DDR devices
during a write operation

4.2 Introduction
 The DDR SDRAM controller [9] is designed to provide a
simplified interface to the industry standard DDR SDRAM
memory Micron® MT46V4M16. It has a user interface at one
side and the memory at the other side. Burst lengths of 2, 4 or
8 and CAS latencies of 1.5, 2.0, 2.5 or 3.0 can be programmed
using the controller. Data mask lines are supported for
WRITE operations. The controller supports seven commands
including two for the load registers.
 The commands are: NOP, READ, WRITE, REFRESH,
PRECHARGE and LOAD_REG. Data mask lines are
supported for WRITE operations. It supports the following
commands: NOP, READ, WRITE, REFRESH, PRECHARGE
and LOAD_REG. Data path widths of 16, 32 and 64 bits are
possible. It uses two different frequency, 100 MHz and
200MHz output clocks to facilitate enhanced performance.
The DDR SDRAM is controlled by bus commands that are
formed using combinations of RAS_N, CAS_N and WE_N
signals.

4.3 Detailed Architecture – Control Logic
 The detailed architecture of the proposed controller is shown
in Fig. 4. DDR SDRAM Controller module consists of three
main modules, the Control Interface, Command and Data
Path Modules. The DDR SDRAM Controller module is the
top-level module that instantiates the three lower modules
and brings the whole design together. The inputs to the
controller are fed by the user and the outputs from the
controller are fed to the memory inputs. The Control Interface
module accepts commands and related memory addresses
from the host, decoding the command and passing the
request to the Command module. The command module
accepts command and address from the Control Interface
Module, generating the proper commands to the SDRAM.
The data Path Modules handles the data path operations
during WRITE and READ commands [9]. The top-level
module also instantiates a PLL that is used to generate two

output clocks of 100MHz and 200MHz each and a locked
clock output to improve I/O timing. The control and interface
modules decodes the NOP, READ, WRITE, PRECHARGE,

REFRESH and LOAD_REG commands and passes them
along with ADDR to the command module.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 760
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 4. Detailed Architecture – DDR SDRAM Control Logic

Refresh commands also are periodically registered to the
command module using this module. The command module
generates appropriate signals to the memory by accepting
decoded commands from the control and interface module. It
also contains a bus arbiter that arbitrates between the
commands from the host interface and the refresh requests
from the refresh control logic. The data path width in to the
controller is two times the width to the DDR SDRAM device.
DIN and DOUT are fixed at 32 bits and the DQ port is fixed at
16 bits. Data path modules can be cascaded to increase the
data bus width in increments of 32 bits as shown in Fig. 4.

4.4 Memory Integrity Verification Logic
 The integrity verification algorithm is illustrated in Fig. 5.
As shown in the figure, there are two blocks which can be DQ
sized arrays used to store the original data and the possibly
untrusted data. DQS[7:0], dqs[7:0] and saddr[11:0] is used to
sync the appropriate data storage within these blocks. Then

the data within each block have to be transferred to the SHA
engine where the hash functions are used to perform equal
operations on both the data. For every READ operation the
data stored in the original data hash table during the previous
WRITE command should match that of the untrusted data
hash table. Also during the WRITE command the column
data specified in the address line saddr[11:0] will be written
to both the trusted and untrusted blocks. This data after
performing hash operations within the SHA engine and
stored in the data hash tables should also match each other. If
a match occurs it indicates that the memory is not corrupted
and so a logic HIGH is generated by the hash function
comparator. Otherwise a logic LOW is forced on to the
RESET_N pin which helps to flush the corrupted data from
the memory. During the next command cycle a NOP
command issued by the controller again brings back the
RESET_N pin HIGH to facilitate further memory transfers.

text

CLK

ADDR[21:0]

RESET_N

CMD[2:0]

DIN[127:0]

DM[15:0]

CAS_N

RAS_N

WE_N

CKE

CS_N[1:0]

SA[11:0]

BA[1:0]

CMD_ACK

DOUT[127:0]

DQS[7:0]

DQ[63:0]

DQM[7:0]

MEMORY
CONTROL LOGIC

text

ORIGINAL
DATA

UN-TRUSTED
DATA

HASH FUNCTION
COMPARATOR

HASH
FUNCTION

TABLE I
ORIGINAL

DATA

HASH
FUNCTION
TABLE II

UN-TRUSTED
DATA

SHA ENGINE

INTEGRITY VERIFICATION
ALGORITHM

DDR SDRAM
MEMORY
MODULE

(Vulnerable to
Corruption –
Un-trusted)

DDR SDRAM CONTROLLER CORE

dq[63:0] dqs[7:0] saddr[21:0]

(1/0) Verified Integrity Information

Fig. 5. DDR SDRAM Controller Core with Memory Integrity Verification
Algorithm

5 TESTING

 The architectural design was tested by using a test bench
with test signals as shown in Fig. 9. A set of preferable input
combinations were forced to act upon the controller inputs so
that correct results were obtained as waveforms. The
simulated results were obtained in ModelSim® by applying
appropriate delay elements.

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 5, Issue 7, July-2014 761
ISSN 2229-5518

IJSER © 2014
http://www.ijser.org

Fig. 6. Test Bench – DDR SDRAM Controller Core

 The design was synthesized by porting to Altera®
Cyclone™ II - EP2C20F484C7 FPGA and results were verified
using SignalTap® II Logic Analyzer tool in Altera Quartus®
II software.

6 CONCLUSION

 This paper describes the architecture design of DDR
SDRAM Controller IP Core with an inbuilt memory integrity
verification module. The proposed architecture can
successfully control the different commands to the DDR
SDRAM memory module. The design was modeled using
verilog HDL and can be easily adapted for several different
design requirements. The paper also suggests a modest, yet
efficient method to protect the memory from being corrupted
while transfer of data between the memory and other
modules. Even though DDR SDRAMs higher generations are
available now, a DDR SDRAM memory was used here as its
standards are still being deployed and improved. This
method for memory integrity verification if realized can be
applied to DDR2 and also higher generations of memory
devices.

REFERENCES

[1] Micron 1GB DDR SDRAM datasheet, Micro Technology

Inc. 2003.
[2] How to use DDR SDRAM, Elpida Memory, Inc. 2002.
[3] Micron Technology Inc., "DDR SDRAM Functionality

and Controller Read Data Capture", Design Line, Vol.8,
Issue 3, Sep. 1999.

[4] JEDEC. Double Data Rate (DDR) SDRAM Specification.
JEDEC Solid State Technology Association, JESD79F
edition, May 2005.

[5] Micron Technology Inc., “DDR SDRAM:
MT46V4M16D1TG-7 Data Sheet”.

[6] https://en.wikipedia.org/wiki/SHA-2
[7] Weidong Shi .“Architectural Support for Protecting

Memory Integrity and Con¯dentiality”, College of
Computing Georgia Institute of Technology August 2006.

[8] “Descriptions of SHA-256, SHA-384, and SHA-512”,
http://csrc.nist.gov/groups/STM/cavp/documents/shs
/sha256-384-512.pdf

[9] “An Improved Memory Integrity Protection Scheme”,
February 21, 2010.

[10] Atsuya Okazaki “Efficient Off-chip Memory Integrity
Verification for Secure Processor”, Graduate School of
Information Science, Nara Institute of Science and
Technology, February 2005.

[11] G. Edward Suh, Dwaine Clarke, Blaise Gassend, Marten
van Dijk, Srinivas Devadas “Efficient Memory Integrity
Verification and Encryption for Secure Processors”, MIT
Computer Science and Artificial Intelligence Laboratory
Cambridge, MA 02139, USA 2003

[12] Yin Hu “An Efficient Scheme to Provide Real-time
Memory Integrity Protection”, Worcester Polytechnic
Institute, May 2009.

[13] A. C. Bonatto, A. B. Soares, A. A. Susin. “DDR SDRAM
controller IP designed for reuse,” In: IP Based Electronic
System Conference & Exhibition - IP 08, France. Design
and Reuse, pp. 175-180, 2008.

[14] Thomas, Donald, Moorby, Phillip "The Verilog Hardware
Description Language" Kluwer Academic Publishers,
Norwell, MA.

[15] ALTERA, DDR SDRAM Controller White Paper, Ver1.1,
2002, 8.

[16] DDR SDRAM Controller, Reference Design RD1020,
Lattice, Semiconductor Corporation, April 2004.

жжж

IJSER

http://www.ijser.org/

	1 INTRODUCTION
	2.1 Introduction
	2.2 Overview
	2.3 Description
	3.1 Introduction
	3.2 Target Memory – Micron® MT42V4M16
	4.1 Pin Description

